DECLARATION OF PERFORMANCE CERT- 99/3603. TOUGHSHEET RADON /GAS BARRIER - EN13967

Usage, 400/500 micron Flexible Sheeting to be used for water proofing and gas control in solid concrete floors that are not subject to hydrostatic pressure from the ground.

SPECIFICATION- CFS -2MT/4MT X 20MTS X 400MICRON CFS -2MT/4MT X 12.5MTS X 500MICRON

THICKNESS -EN12311

400mu Amber1

500mu AMBER 2

LENGTH - EN1848-2

20 MTS - 0 + 5% 12.5 MTS - 0 +5%

WIDTH - EN1842-2

4MT - 0 + 10%

4MT - 0 + 10%

DROP DART-EN12691

30 MLV

30MLV

WATER TIGHTNESS

BBA PASS.

STATIC LOADING

BBA PASS

DURABILITY / AGED

BBA PASS

MASS BBA TEST.

368 MLV

GAS TRANSMISSION RATE: 2015

Rapra ASTM-D1434/2009.

 23 ± 2 °C

-Report.

Methane transmission

321+

222+

Carbon Dioxide Transmission

1077+

771+

Radon- K124/02/95

 $0.2 \times 10^{-11} \text{ m} 2.5^{-1}$

Test regulation: ISO/TS 11665-13

Test execution date: 3.1.2022 - 5.1.2022

Test execution place: laboratory OL124 - D2044d

Test samples

Test samples were cut from the material handed by the client representative Alan Blundell on 3.1.2022. The samples were registered with marks 02/22/J (1 to 3) by M. Jiránek. The dimensions of the samples were 135×325 mm (effective area 293.10^{-4} m²) and their thickness was 0.39 mm.

Test method

Radon diffusion coefficient was determined according to the method A of ISO/TS 11665-13. The tested samples were placed between the source and the receiver containers. Radon diffuses through the samples from the source container, which is connected to the radon source RF 100, to the receiver containers. Concentrations on both sides of the tested samples are measured continuously by radon detectors TSR-4 of the TERA system (receiver containers) and current mode ionization chambers (source container). Radon diffusion coefficient was derived from the process of fitting the numerical solution to the curves of radon concentration measured in the receiver containers. Numerical solution is based on the one-dimensional time-dependent diffusion equation describing radon transport through the tested material.

Laboratory conditions

Radon Barrier 400 - material

Steady state radon concentration in the source container: $1.9 \pm 0.1 \text{ MBq/m}^3$ Maximum radon concentration in the receiver containers: $36.4 \pm 0.2 \text{ kBq/m}^3$

Laboratory temperature: 22°C ± 1°C

Relative humidity of air in the laboratory: $39\% \pm 3\%$

Pressure difference between the lower and the upper containers: 1 Pa \pm 1 Pa

Test device

Radon detectors TSR-4 of the TERA system (N17)
Measuring system with ionization chambers operating in current mode (N14)
Radon concentration measuring system RM-2 (N15)
Micrometer (N11)

CZECH TECHNICAL UNIVERSITY IN PRAGUE FACULTY OF CIVIL ENGINEERING – TEST LABORATORY Test laboratory No. 1048 accredited by ČIA according to ČSN EN ISO/IEC 17025:2018

Thákurova 7, 166 29 Praha 6

Issue No.: 7
Page No.: 3

Report No: 124002/2022

Date of issue: 11.1.2022

Test results

The resulting values of the radon diffusion coefficient, the radon diffusion length and the radon resistance including expanded measurement uncertainty, are listed in the following table. The results refer to the samples as they were taken over.

TESTED MATERIAL		Radon Barrier 400
RN DIFFUSION COEFFICIENT D (m²/s)	mean value	7,4.10 ⁻¹²
	±U	± 0,9.10 ⁻¹²
RN DIFFUSION LENGTH <i>l</i> (m)	mean value	1,9.10 ⁻³
	±U	± 0,2.10 ⁻³
RN RESISTANCE R _{Rn} (Ms/m)	mean value	51,7
	±U	± 6,2

The expanded uncertainties of measurement $\pm U$ mentioned are the product of standard measurement uncertainties and the expansion coefficient k=2, which provides a confidence interval of approx. 95 %. The radon diffusion length was calculated according to the equation $I=\sqrt{D/\lambda}$ and the radon resistance as follows: $R_{\rm Rn}=\frac{\sinh(d/l)}{\lambda \cdot l}$, where $\lambda=2,1.10^{-6}~{\rm s}^{-1}$ and $d=0,39~{\rm mm}=0,39.10^{-3}~{\rm m}$.

The test was performed by: prof. Ing. Martin Jiránek, CSc., Ing. Veronika

Kačmaříková, Ph.D.

The report was prepared by: prof. Ing. Martin Jiránek, CSc.

F mercer & sons hold current CE markings and harmonized EN13967 standard.

NHBC standards 2016 has accepted Toughsheet Radon Barrier when installed

In accordance with NHBC standards, this product must be laid in accordance

Of the BRE report – BRE 211:2015. See guidance.

This product must be stored flat and undercover from direct sunlight.

Certificate of factory production control- 0836-CPR-13F030.

Singed for and on behalf of manufacturer.

Signed

tugw)

dated